Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene.
نویسندگان
چکیده
By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single-monolayer thickness on SiO2/Si wafers. The optical contrast of these mica flakes on top of a SiO2/Si substrate depends on their thickness, the illumination wavelength, and the SiO2 substrate thickness, and can be quantitatively accounted for by a Fresnel-law-based model. The preparation of atomically thin insulating crystalline sheets will enable the fabrication of ultrathin, defect-free insulating substrates, dielectric barriers, or planar electron-tunneling junctions. Additionally, it is shown that few-layer graphene flakes can be deposited on top of a previously transferred mica flake. Our transfer method relies on viscoelastic stamps, as used for soft lithography. A Raman spectroscopy study shows that such an all-dry deposition technique yields cleaner and higher-quality flakes than conventional wet-transfer procedures based on lithographic resists.
منابع مشابه
Optical visualization of ultrathin mica flakes on semitransparent gold substrates
We show that optical visualization of ultrathin mica flakes on metallic substrates is viable using semitransparent gold as substrates. This enables to easily localize mica flakes and rapidly estimate their thickness directly on gold substrates by conventional optical reflection microscopy. We experimentally demonstrate it by comparing optical images with atomic force microscopy images of mica f...
متن کاملWater-gated charge doping of graphene induced by mica substrates.
We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm thick bilayers were found to be present in regions of the interface of graphene/mica heterostacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, show...
متن کاملDetermining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates.
Transition-metal dichalcogenide (TMD) semiconductors have been widely studied due to their distinctive electronic and optical properties. The property of TMD flakes is a function of their thickness, or layer number (N). How to determine the N of ultrathin TMD materials is of primary importance for fundamental study and practical applications. Raman mode intensity from substrates has been used t...
متن کاملFrictional characteristics of atomically thin sheets.
Using friction force microscopy, we compared the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide (MoS2), niobium diselenide, and hexagonal boron nitride exfoliated onto a weakly adherent substrate (silicon oxide) to those of their bulk counterparts. Measurements down to single atomic sheets revealed that friction monotonically increased as the nu...
متن کاملControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices.
Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 7 17 شماره
صفحات -
تاریخ انتشار 2011